A boomerang does funny things because it is in fact a gyroscope. Aerodynamic forces generate a twisting moment which cause the 'gyroscope' to precess and to move on a circular path.

Let us examine the forces acting on a boomerang of radius a. The centre of the boomerang is moving at a constant forward speed V and the boomerang is spinning with angular velocity ω as shown in the diagram. The 'top' end \mathbf{A} is moving faster than V with speed $V+a \omega$ and the 'bottom' end \mathbf{B} is moving slower with speed $V-a \omega$. A wing generates more lift when it is moving faster so point A is generating more lift than point B .

side-on view showing velocities

edge-on view showing lift forces

The two forces F_{A} and F_{B} can be represented by a single force F and a single couple C. With this simple representation of the forces acting on the boomerang we can give two reasons why it moves on a circular path:

1. A constant centripetal force F produces circular motion with velocity V on a radius R :

$$
F=m V^{2} / R
$$

eq. 1
2. A constant couple C acting on a gyroscope spinning at angular velocity ω causes steady precession at rate Ω :

$$
C=J \omega \Omega
$$

eq. 2 with $m \& J$ the boomerang's mass \& moment of inertia.

If the rate of precession Ω exactly corresponds to the angular velocity of circular motion, then the boomerang stays tangential to the flight path as shown. This gives an equation relating V to Ω

$$
V=R \Omega
$$

eq. 3
The aerodynamic lift force L acting on an airfoil of area A moving at speed v in air with density ρ is given by

$$
\begin{equation*}
L=\frac{1}{2} \rho v^{2} C_{\mathrm{L}} A \tag{eq. 4}
\end{equation*}
$$

where C_{L} is defined as the lift coefficient. It can be shown ${ }^{[1]}$ by integrating the lift force over the area of a cross-shaped boomerang that the net lift force F and aerodynamic couple C are given by

$$
\begin{equation*}
F=\frac{1}{4} \rho\left(V^{2}+(a \omega)^{2}\right) C_{\mathrm{L}} A_{\mathrm{s}} \tag{eq. 5}
\end{equation*}
$$

boomerang on circular flight path
and $\quad C=\frac{1}{4} \rho V a^{2} \omega C_{\mathrm{L}} A_{\mathrm{s}} \quad$ eq. 6
where $A_{\mathrm{s}}=\pi a^{2}$ is the swept area of the boomerang, and V, ω and a are the velocity, spin speed and radius of the boomerang as before.
From equations 2, 3 and 6 , we find that the radius R of the circular flight path is independent of spin speed ω and forward velocity V, and that it is a constant for a given boomerang:

$$
\begin{equation*}
R=\frac{4 J}{\rho C_{\mathrm{L}} \pi a^{4}} \tag{eq. 7}
\end{equation*}
$$

For the case of a cross-shaped boomerang, $J=\frac{1}{3} m a^{2}$ and equations $1,5 \& 7$ can be arranged to give

$$
\mathrm{a} \omega=\sqrt{2} V
$$

$$
\text { eq. } 8
$$

which defines the 'flick-of-the-wrist' needed to make the boomerang fly properly.

[^0]
[^0]: ${ }^{[1]}$ For more information see
 http://www.eng.cam.ac.uk/~hemh/boomerangs.htm

