Hugh Hunt

Cambridge University, July 2001

This analysis applies to any boomerang, but is particularly applied to the cross-shaped boomerang shown on Fig. 1. The analysis follows closely the assumptions of conventional propeller theory. The boomerang sweeps a circular area and every part of the swept circle is "visited" by a segment of the airfoil at a sufficiently-rapid rate so that the swept area can be considered to be a uniform disc with distributed lift.

An element of the lifting disc of area $\mathrm{d} A$ is assumed to generate a lift force $\mathrm{d} F=\frac{1}{2} \rho \nu^{2} C_{L} \mathrm{~d} A$, where C_{L} is a lift coefficient for the airfoil, ρ is the density of air and v is the local velocity of the element $\mathrm{d} A$ of the lifting disc.

Fig. 1

It is necessary to determine the elemental velocity v from the kinematics that apply to a boomerang. Fig. 2 shows the forward velocity V and the angular velocity ω of a lifting disc of radius a. The elemental area $\mathrm{d} A=r \mathrm{~d} r \mathrm{~d} \theta$ and the velocity of the element $v=V \sin \theta+a \omega$. It is possible then by integration to compute the total lift force $F=\iint d F$ and the total lift couple $C=\iint r \sin \theta d F$.

Fig. 2
For the purposes of the following analysis these integrals will be useful:

$$
\int_{0}^{2 \pi} d \theta=2 \pi \quad \int_{0}^{2 \pi} \sin \theta d \theta=0 \quad \int_{0}^{2 \pi} \sin ^{2} \theta d \theta=\pi \quad \int_{0}^{2 \pi} \sin ^{3} \theta d \theta=0
$$

So the total lift force is given by

$$
\begin{aligned}
F=\int_{0}^{a} \int_{0}^{2 \pi} \frac{1}{2} \rho \nu^{2} C_{L} d A & =\int_{0}^{a} \int_{0}^{2 \pi} \frac{1}{2} \rho(V \sin \theta+r \omega)^{2} C_{L} r d r d \theta \\
& =\frac{1}{2} \rho C_{L} \int_{0}^{a} \int_{0}^{2 \pi}\left(V^{2} r \sin ^{2} \theta+2 V \sin \theta r^{2} \omega+r^{3} \omega^{2}\right) d r d \theta
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{2} \rho C_{L} \int_{0}^{a}\left(\pi V^{2} r+2 \pi r^{3} \omega^{2}\right) d r \\
& =\frac{1}{4} \rho C_{L}\left(\pi V^{2} a^{2}+\pi a^{4} \omega^{2}\right) \\
& =\frac{1}{4} \rho C_{L} \pi a^{2}\left(V^{2}+(a \omega)^{2}\right) \tag{1}
\end{align*}
$$

and the total aerodynamic couple is given by

$$
\begin{align*}
C=\int_{0}^{a} \int_{0}^{2 \pi} \frac{1}{2} \rho \nu^{2} C_{L} r \sin \theta d A & =\int_{0}^{a} \int_{0}^{2 \pi} \frac{1}{2} \rho(V \sin \theta+r \omega)^{2} C_{L} r^{2} \sin \theta d r d \theta \\
& =\frac{1}{2} \rho C_{L} \int_{0}^{a} \int_{0}^{2 \pi}\left(V^{2} r^{2} \sin ^{3} \theta+2 V \sin ^{2} \theta r^{3} \omega+r^{3} \sin \theta \omega^{2}\right) d r d \theta \\
& =\frac{1}{2} \rho C_{L} \int_{0}^{a} 2 V \pi r^{3} \omega d r \\
& =\frac{1}{4} \rho C_{L} \pi a^{4} \omega V \tag{2}
\end{align*}
$$

These are the external aerodynamic actions. To determine the response of the boomerang two well-known dynamical equations are used:

$$
\begin{array}{ll}
& F=m R \Omega^{2} \\
\text { and } & C=J \Omega \omega \tag{4}
\end{array}
$$

for steady-state circular motion and gyroscopic precession respectively, where J is the polar moment of inertia of the boomerang. The radius of the flight of the boomerang R is related to the forward velocity V and the turning rate Ω by $V=R \Omega$.

Equations (2) and (4) can now be used to determine the flight radius of the boomerang:

$$
\begin{equation*}
R=\frac{4 J}{\rho C_{L} \pi a^{4}} \tag{5}
\end{equation*}
$$

and equations (1), (3) and (5) give a further relationship:

$$
\begin{equation*}
\frac{m a^{2}}{J}=1+\left(\frac{a \omega}{V}\right)^{2} \tag{6}
\end{equation*}
$$

For the particular case of a cross-shaped boomerang the moment of inertia $J=\mathrm{ma}^{2} / 3$ which gives rise to the particular equations for the "flick of the wrist":

$$
\begin{equation*}
a \omega=\sqrt{2} V \tag{7}
\end{equation*}
$$

