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This analysis applies to any boomerang, but is particularly applied to
the cross-shaped boomerang shown on Fig. 1. The analysis follows
closely the assumptions of conventional propeller theory. The
boomerang sweeps a circular area and every part of the swept circle is
“visited” by a segment of the airfoil at a sufficiently-rapid rate so that
the swept area can be considered to be a uniform disc with distributed
lift.

An element of the lifting disc of area dA is assumed to generate a lift
force dF = 3 psz . dA , where C; 1s a lift coefficient for the airfoil, pis

the density of air and v is the local velocity of the element dA of the

lifting disc. Fig. 1

It is necessary to determine the elemental velocity v from the kinematics that apply to a boomerang. Fig. 2
shows the forward velocity V and the angular velocity @ of a lifting disc of radius a. The elemental area
dA = rdrd @ and the velocity of the element v = Vsin@+ aw. It is possible then by integration to compute the

total lift force F = j .[ dF and the total lift couple C = j .[ rsin@dF .

Vsin@+ aw

Fig. 2
For the purposes of the following analysis these integrals will be useful:
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So the total lift force is given by
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and the total aerodynamic couple is given by
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These are the external aerodynamic actions. To determine the response of the boomerang two well-known
dynamical equations are used:

F = mR? 3)
and C=JRw 4)

for steady-state circular motion and gyroscopic precession respectively, where J is the polar moment of
inertia of the boomerang. The radius of the flight of the boomerang R is related to the forward velocity V
and the turning rate 2 by V=RQ2.

Equations (2) and (4) can now be used to determine the flight radius of the boomerang:
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and equations (1), (3) and (5) give a further relationship:
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For the particular case of a cross-shaped boomerang the moment of inertia J = ma*/3 which gives rise to the
particular equations for the “flick of the wrist”:
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